CS: Pod of Delight

Week 13: Search

| ogistics

How is everyone doing?

Semester is almost over!

No Pod next week, go home enjoy thanksgiving!
The week atfter, party!

Then you're done! Off you go into the real world!

SO you want to build a
search engine?

* Search engines have four main problems
e Crawling

* |Index

* Search

* Ranking

Crawling

The internet is a massive jungle of links
Goal: find them all

How?

« Follow every link in every page

* Exponential

Problems:

 \Where do you start?

 How do you know if you've already seen a page? (cycles)

Crawling: Implemented

* Need a way to get webpage

* All webpages are nothing but some text (html/
css/js) and media (images/flash/videos/music)

 Need a way to parse source code

* Parse the htm| DOM tree, and provide methods
for traversing it, querying it, etc...

e Jsoup

Crawling: Problems

 Where do you start?

* Google originally started crawling on Larry
Page’s Stanford personal website

 How do you prevent cycles?
 Hashtable

 Bloom filter

Index

* SO0 you found the internet, now what”
e Store what you found

e Efficient representation of the content so you can
query it

INnverted Inaex

 Maps words to locations
 Map words to documents

 For a given word map to which documents it can be
found in

e How to store?
e Hashmap

e B-tree

How to build it?

Parse every word of content

Map the word to the document where you found it
What it there are multiple documents with that word
 Map to a set

What if there are multiple occurrences of that word in the
document?

e Doesn’t matter!

e Or does it?

What it you want to store
phrases”

Could map all word tuples, or triplets!

Too much space!

Instead map word to document, and place in document
You store all occurrences

Advantages:

» Can search for where in document word is!

e Can perform phrase searches!

SO searching

You have your index, awesome!
How do you search it?
 Look up a word in the index, boom!
What it you want to search for multiple words
e Look up all, return the intersection, boom!
What if you want to search for the union of words?
e Look up all, return the intersection, boom!
What if you want to search for the union or intersections?

e You get the point

Humans

Biggest problem: English

Language is imprecise

Have to parse an English query

Can have explicit and implicit ANDs and ORs

Need to parse queries like

“the duck is awesome”

the duck is awesome

the | duck | is | awesome

(the duck) | (is awesome)

the duck | “is awesome”

Recursive descent parser

e First define a context-tfree-grammar (CFG) for your
language

* [hen start parsing it top-down, consuming input as
it matches

 Keep parsing until either all the input Is consumed
Or you encounter an error (input doesn't match

what you expected)

RDP: Implemented

First want to tokenize your input

StringTokenizer

Deal with whitespace (either too much, too little, etc)
Then build a recursive descent parser

e Start at the start state, build methods to consume input for
each of the non-terminal states

e Store the query in some representation

* Probably want a tree!

Searching

* YOU have your guery tree
 Then perform it, keeping a list of pages as you go
e Little tricks and optimizations

* |f you have intersect, only search the result of the
first query

Ranking

e Cool! You have your list of webpages
 How do you return them”? How do you rank?
 Need a way to score a match

e Number of word occurrences

Where in the document the word appears
e |sitin the title? Big text? small text”? colored? underlined?

 How close two words appear to each other?

Exact match vs approximate match?

Pagenank

As you crawl, store all welbsites that point back to a
given website (backlinks)

The more a website Is linked to, the better the
content

Rank higher

Links from higher ranked websites are more
meaningful

Results

Take all the matches you found
Score all of them
Sort them

Return them to the user

Profit??"

Good luck :

