
CS: Pod of Delight
Week 13: Search

Logistics
• How is everyone doing?

• Semester is almost over!

• No Pod next week, go home enjoy thanksgiving!

• The week after, party!

• Then you’re done! Off you go into the real world!

So you want to build a
search engine?

• Search engines have four main problems

• Crawling

• Index

• Search

• Ranking

Crawling
• The internet is a massive jungle of links

• Goal: find them all

• How?

• Follow every link in every page

• Exponential

• Problems:

• Where do you start?

• How do you know if you’ve already seen a page? (cycles)

Crawling: Implemented
• Need a way to get webpage

• All webpages are nothing but some text (html/
css/js) and media (images/flash/videos/music)

• Need a way to parse source code

• Parse the html DOM tree, and provide methods
for traversing it, querying it, etc…

• Jsoup

Crawling: Problems
• Where do you start?

• Google originally started crawling on Larry
Page’s Stanford personal website

• How do you prevent cycles?

• Hashtable

• Bloom filter

Index

• So you found the internet, now what?

• Store what you found

• Efficient representation of the content so you can
query it

Inverted Index
• Maps words to locations

• Map words to documents

• For a given word map to which documents it can be
found in

• How to store?

• Hashmap

• B-tree

How to build it?
• Parse every word of content

• Map the word to the document where you found it

• What if there are multiple documents with that word

• Map to a set

• What if there are multiple occurrences of that word in the
document?

• Doesn’t matter!

• Or does it?

What if you want to store
phrases?

• Could map all word tuples, or triplets!

• Too much space!

• Instead map word to document, and place in document

• You store all occurrences

• Advantages:

• Can search for where in document word is!

• Can perform phrase searches!

So searching
• You have your index, awesome!

• How do you search it?

• Look up a word in the index, boom!

• What if you want to search for multiple words

• Look up all, return the intersection, boom!

• What if you want to search for the union of words?

• Look up all, return the intersection, boom!

• What if you want to search for the union or intersections?

• You get the point

Humans
• Biggest problem: English

• Language is imprecise

• Have to parse an English query

• Can have explicit and implicit ANDs and ORs

• Need to parse queries like

• “the duck is awesome”

• the duck is awesome

• the | duck | is | awesome

• (the duck) | (is awesome)

• the duck | “is awesome”

Recursive descent parser

• First define a context-free-grammar (CFG) for your
language

• Then start parsing it top-down, consuming input as
it matches

• Keep parsing until either all the input is consumed
or you encounter an error (input doesn’t match
what you expected)

RDP: Implemented
• First want to tokenize your input

• StringTokenizer

• Deal with whitespace (either too much, too little, etc)

• Then build a recursive descent parser

• Start at the start state, build methods to consume input for
each of the non-terminal states

• Store the query in some representation

• Probably want a tree!

Searching

• You have your query tree

• Then perform it, keeping a list of pages as you go

• Little tricks and optimizations

• If you have intersect, only search the result of the
first query

Ranking
• Cool! You have your list of webpages

• How do you return them? How do you rank?

• Need a way to score a match

• Number of word occurrences

• Where in the document the word appears

• Is it in the title? Big text? small text? colored? underlined?

• How close two words appear to each other?

• Exact match vs approximate match?

PageRank
• As you crawl, store all websites that point back to a

given website (backlinks)

• The more a website is linked to, the better the
content

• Rank higher

• Links from higher ranked websites are more
meaningful

Results
• Take all the matches you found

• Score all of them

• Sort them

• Return them to the user

• Profit???

Good luck :)

