
CS: Pod of Delight
Week 11: Git



Git



What is Git?
• Distributed version control tool 

• Keep track of changes 

• Synchronize changes across machines/server 

• Allows for collaboration 

• Git is not github



Basic Git



Basic Git Commands
• add 

• stage a file/changes (or start tracking if wasn’t tracked) 

• git add test.txt 

• commit 

• store (some or all) staged changes in the .git database 

• commits track: datetime, author, files changed, changes (diff), and a 
commit message 

• git commit test.tx -m “commit a single change” 

• git commit -am “commit all changes”



Basic Git Commands

• push 

• Push all your commits to a remote location 

• pull 

• Pull commits from a remote location



Basic Git Commands
• status 

• Tell you the status of stage, working dir, server, files 
changed, etc… 

• diff 

• Use to see the changes between any two commits 

• git diff 

• git diff file.txt 



Basic Git Commands

• log 

• See the history of all commits 

• checkout 

• switch to a different snapshot



Branches



Basic Branches
• “alternate realities” 

• Allow you independently work on different things 

• You brach out from a common point, changes 
aren’t propagated 

• Used for collaboration, working on features, 
backup, trying things 

• Easy to create, switch, and delete



Branching
• Can branch and checkout branch with 

• git checkout -b mybranch 

• Or independently create branch 

• git branch my branch 

• Can list all branches 

• git branch



Merging
• Merging is taking all changes in one branch and applying them to another 

• git merge branch 

• Will merge all (disjoint) changes from branch to your current branch 

• Will create a merge commit, so histories are left untouched 

• Can also use rebase, which will “replay” all commits on your local branch 
without creating a merge commit 

• This “rewrites” history by moving the branching point to the head of 
branch you are rebasing from 

• git rebase branch



Branching Illustrated



Git Ideology: Branches

• Master: pristine, always works, ie: production 

• Dev: practice for master, should still attempt to 
work, but no heads roll if it doesn’t 

• Feature branches: each developer has a branch for 
each feature



Git Ideology: Workflow
• Developer Sandy wants to add a button 

• git checkout sandy@mystartup:~codebase // get the codebase 

• git checkout dev // work off the development branch 

• git checkout -b sandy_button // make her own branch 

• <work on code, add the button> 

• git checkout dev // go back to dev branch 

• git pull // pull any changes from the server 

• git checkout sandy_button // go back to her branch 

• git merge dev (or git rebase dev) //brings her feature branch back up to date 

• At this point she can submit it to QA, merge into dev, etc…



Git Remotes
• Remote git databases 

• Allow multiple people to work on codebase 

• Github, gitlab, bitbucket, are all common examples 

• But you only need a filesystem! 

• VPN, RPI, cs machines, dropbox, gdrive



Starting a Git repo

• Starting from an existing 

• git clone 

• Starting a new one 

• git init



Contributing to OSS
• “Fork” their repo (not actually git feature) 

• Clone it 

• Make your changes 

• Create a pull request 

• Essentially asking the original owner to merge your branch 

• Code review, comments, back and forth 

• Pull request accepted, your code gets merged back upstream



Some other pros
• Everyone has their own copy, no stepping on each 

other’s shoes 

• Open source 

• Works without internet connection, everything is 
local 

• Simple to use



Cons of Git

• Decentralized means no easy way to keep track of 
progress unless pushed 

• Requires everyone to have a full copy of codebase 

• If things go bad, they can go real bad




