
L - a fantastic lambda-calculus-based
functional programming language

Patricio Lankenau and Robert Perce

December 4, 2015

Abstract

In this paper, we introduce L, a fantastic functional programming
language based on the lambda calculus. L is statically typed with full
Hindley-Milner based type inference, which requires no type annota-
tions. Furthermore, L provides many features to the developer such
as beautiful syntax, beautifully designed operational semantics, full
stream operators on lists, and much more! In this paper we describe
our contributions as well as the design decisions behind them. We then
go on to formally prove that our type system is sound and powerful
enough to prevent all run-time errors. Finally, we give some example
of our beautiful language performing type inference on a wide variety
of programs, as well as examples of where our type inference engine
prevent run-time errors that competing languages would have let slip.

1 Syntactic Sugar

In order to make L more appealing to all future L programmers—and because
we have Haskell experience—we decided to create a shorthand notation defin-
ing lambda functions. Instead of writing out, e.g. lambda x.x, a programmer
may now use \x.x.

Furthermore, in order to remove confusion about the unary operators for
head and tail we created a more readable thus more useful way of invoking
them using named functions: head and ! both lex to TOKEN_HD, and tail
and # are TOKEN_TL.

Finally, to make code more readable we added the ability to initialize lists
as a literal construct—see below.

1

2 List Semantics

• Allow [e1, e2, e3] to create a list.

• Nil can be written as [].

• Distinguish between a singleton list and the element inside, such that
![a] is meaningful.

• The cons operator now takes a List[T] on the right and a T on the
left, and prepend the element to the list, e.g. a @ [b, c] = [a, b,
c]. This is exactly the way Haskell handles its cons operator, :.

2.1 Static list initialization

Like most real programming languages, we added support for list initializa-
tion using a literal syntax. A list may be created via a comma-separated list
of expressions wrapped in square brackets, e.g. [0, 1, 2, 3]—much cleaner
and more pleasant than the cons approach, which would have in this example
appeared as 0 @ 1 @ 2 @ 3 @ Nil.

2.2 More efficient storage (using vectors)

Rather than a AstList begin a glorified tuple, each AstList is now backed
by a std::vector, which means prepending and iterating is quite fast.

2.3 Rewriting of Cons

This required changing the CONS section of AstBinOp to prepend the left
argument onto the right argument. Typing let us specify that cons is type
T→ [T], where T is an ArbitraryType (see below for details on that).

2

2.3.1 New operational semantics

E ⊢ e1 : v1
E ⊢ e2 : [L]

E ⊢ e1 @ e2 : [v1, L]

Γ ⊢ e1 : τ
Γ ⊢ e2 : List[τ]

Γ ⊢ e1 @ e2 : List[τ]

E ⊢ e1 : v1
E ⊢ e2 : v2

...
E ⊢ en : vn

E ⊢ [e1, e2, . . . , en] : [v1, v2, . . . , vn]

Γ ⊢ e1 : τ
Γ ⊢ e2 : τ

...
Γ ⊢ en : τ

E ⊢ [e1, e2, . . . , en] : List[τ]

2.3.2 Problems with defining both append and prepend

Initially, we wanted @ to perform both element appending and prepending. . . before
we discovered that would be somewhere between “excruciatingly difficult”
and “actually impossible” to type. So we settled on prepend, in part because
It’s Like Haskell So It Can’t Be All Wrong, and in part because 1 @ 2 @ 3
@ Nil looks a bit nicer than Nil @ 1 @ 2 @ 3.

3 Stream Support

Our final addition to the language is powerful support for stream operators
much like other established languages like Java, python, and Haskell have.

3.1 Map

We added the ability to map over lists with arbitrary functions. Map there-
fore takes a function τ1 → τ2 and a list of type τ1 and returns a list of type
τ2. This is an extremely useful construct that can be used to process and
modify lists.

map \x . x+1 [1 , 2 , 3]

final solved type: List[ConstantType(Int)]
[2, 3, 4]

3

3.2 Filter

We also added the ability to filter lists by application a predicate function to
each element. This returns a new list containing the elements which yielded
a truthy predicate result. This will take a predicate function τ1 → Int and
a list of τ1 and return a new list of τ1.

f i l t e r \x . x>10 [1 , 8 , 9 9 , 4 , 55 , 10 , 100]

final solved type: List[ConstantType(Int)]
[99, 55, 100]

3.3 Reduce

Finally, we added the ability to reduce a list. This takes an accumulator
(initial value) of type τ1, a function which takes two parameters τ1 → τ1 → τ1
, and a list of type τ1. It will then being to apply the function to the
accumulator and each element within the list (starting with the accumulator
and the first, then that result and the second, etc...), and finally return the
final accumulator.

reduce ”” \x , y . x+y [” r ” , ”o” , ”b” , ”e” , ” r ” , ” t ”]

final solved type: ConstantType(String)
"robert"

4 Type System

4.1 Types

• ConstantType(Int)

A constant type that represents all positive and negative integral values
between −215 + 1 and 215 − 1. In this document, unless we specify “in
code output”, we use ConstantType(Int) and Int to represent the
same thing.

• ConstantType(String)

A constant type that represents arbitrary length strings comprised of
characters, exactly as one would probably expect. In this document,

4

unless we specify “in code output”, we use ConstantType(String) and
String to represent the same thing.

• VariableType

Represents a variable in the program. These are annotated with the
name of the identifier. In output, may be seen with one or more ap-
pended apostrophes, ’. This is done reminiscent of alpha reduction to
prevent name conflicts.

• ArbitraryType

Represents any type. Essentially used to create fresh types—a type
variable that doesn’t rely on abusing the name of a VariableType.

• FunctionType

Represents any function (either lambda or operator) that takes some
type and maps to some type (potentially another function type). For
example, a function which takes an Int and returns an Int would have
function type Int → Int whereas a function that takes two Ints and
returns a String would have function type Int → Int → String, seen
in code output as FunctionType(name, ConstantType(Int), Func-
tionType(name, ConstantType(Int), ConstantType(String), since there’s
not really any such thing as a function of multiple variables—it’s just
syntactic sugar for currying.

Internally, the sequences of types is stored in order in a std::vector.

• ListType

Represents a list. Each list type keeps track of the subtype—the type
of the contained elements. This means that we allow for recursive
lists. For example, a list of lists of Ints is entirely valid, and has type
List[List[Int]].

• TypeClass

Type classes represent a set of types. These are used to correctly type
operators which are polymorphic over a subset of all types. We support
the following two typeclasses:

– TypeClass::Plussable

5

Elements that can be added, such as integers (under integer ad-
dition) and strings (under string concatenation).

– TypeClass::Equatable
Elements that can be equated using the equals operator. Cur-
rently, this is again only integers and strings, but it’s not overly
difficult to implement equality of other types as well.

• WeakType

The WeakType is a type wrapper that is used when building a con-
straint from a function application, like (\x.x 6). Since functions—like
\x.x in the example—may be polymorphic, it wouldn’t do to simply
declare that the type of \x.x must be Int → τ . A program might
use the same polymorphic function on multiple types, as in let id
= \x.x in let _ = (id "foo") in (id 3), and here the constraints
that id was Int → τ and String → τ conflict, even though usage was
perfectly valid.

To avoid this problem, we instead constrain that a function is type
WeakType(input) → τ . Now, if two WeakTypes disagree—like in the
above example, where we attempt to unify WeakType(Int) and Weak-
Type(String)—they both give up, and unify to a new ArbitraryType.
If a WeakType attempts to unify with a non-weak type that can unify
with the wrapped type, the parent becomes that non-weak unification.
If a WeakType attempts to unify with a non-weak type that cannot
unify with the wrapped type, the unification fails, and a type error is
reported.

Now we can guarantee type safety, but the final reported type in cases
like the above, where the ultimate result of the program is determined
by a polymorphic application in a program where the function is used
polymorphically, is now an ArbitraryType, even though running the
function clearly produces a concrete type. To fix this problem, we note
that every time the body of a let binding is another let binding, we
must not yet be at the terminus of the program. Once that end is
reached, we mark any generated WeakTypes as is_final. A WeakType
that is marked is_final behaves identically to a non-final WeakType,
except for one case: when a final WeakType disagrees with a non-final
WeakType, the is_final one wins out, and they both unify to that. If

6

two is_final WeakTypes disagree, they still both unify to an arbitrary
type (which, in a valid type-checking program, can’t happen).

Now, cases ending in a WeakType produce the correct value, and at final
report time if the ultimate final type of the program, after all unions
and finds complete, is a WeakType, it is unrolled. It was unsure of
itself, but it made it all the way to the end, so it must be right (this is
also what happens when a function is used non-polymorphically, so all
the generated WeakTypes for that function agree with each other).

4.2 Type Rules

4.2.1 Base Cases

i = int
Γ ⊢ i : Int

s = string

Γ ⊢ s : String

id = identifier
Γ(id) = τ

Γ ⊢ id : τ

Γ ⊢ e1 : τ
Γ ⊢ e2 : τ

...
Γ ⊢ en : τ

Γ ⊢ [e1, e2, . . . , en] : List[τ]

4.2.2 Binary Operators

Γ ⊢ S1 : Int
Γ ⊢ S2 : Int

⊙ is either -,*,/,&, |, <,>

Γ ⊢ S1 ⊙ S2 : Int

Γ ⊢ S1 : τ
Γ ⊢ S2 : List[τ]

Γ ⊢ S1@S2 : List[τ]

Γ ⊢ S1 : τ
Γ ⊢ S2 : τ

τ ∈ Plussable
Γ ⊢ S1 + S2 : τ

Γ ⊢ S1 : τ
Γ ⊢ S2 : τ

τ ∈ Equatable
⊙ is either =, <>

Γ ⊢ S1 ⊙ S2 : Int

4.2.3 Unary Operators

Γ ⊢ S1 : List(τ)

Γ ⊢ isNil S1 : Int

Γ ⊢ S1 : τ

Γ ⊢ print S1 : Int

Γ ⊢ S1 : List(τ)

Γ ⊢ head S1 : τ

Γ ⊢ S1 : List(τ)

Γ ⊢ tail S1 : List(τ)

7

4.2.4 Branch

Γ ⊢ p : Int
Γ ⊢ e1 : τ
Γ ⊢ e2 : τ

Γ ⊢ if p then e1 else e2 : τ

4.2.5 Application

Γ ⊢ S1 : τ1 → τ2
Γ ⊢ S2 : τ1

Γ ⊢ (S1S2) : τ2

4.2.6 Lambda

will be of type τ1
Γ[x← τ1]S1 : τ2

Γ ⊢ λx.S1 : τ1 → τ2

4.2.7 Let

Γ ⊢ S1 : τ
Γ[id← τ]S2 : τ2

Γ ⊢ let id = S1 in S2 : τ2

4.3 Proof of Preservation and Progress

Now that we have our types and type rules defined, we want to prove the
preservation of our type system. In other words, we want to prove that the
our type system is sound and that the soundness is preserved under transition
rules. This is done by inductively showing that for well-typed program e if
E ⊢ e : v and Γ ⊢ e : τ then v ∈ γ(τ) where γ is the concretization function.

Furthermore, we also want to prove that our type system obeys progress.
This is essentially proving that our type system is powerful enough to prevent
all run-time errors. This can be done by proving that for each of transitions,
if the type system checks then the operational semantics will not get stuck.

We begin by arguing preservation and progress for all four base cases:
ints, strings, identifiers, and lists.

8

i = int
Γ ⊢ i : Int

s = string

Γ ⊢ s : String

For ints and strings, we simply have the integer value of integers and string
value of strings. We must show that these have the type of int and string,
which is vacuously true given the hypothesis of the operational semantics
and type rules.

The operational semantics will clearly never get stuck if the types are the
correct ones.

Γ ⊢ e1 : τ
Γ ⊢ e2 : τ

...
Γ ⊢ en : τ

Γ ⊢ [e1, e2, . . . , en] : List(τ)

The same applies for lists, because of the hypothesis we know that we
have a list of some number of elements, and for the type we know that the
type of each element is the same and therefore the final type is a list of that
type.

¡¡¡¡¡¡¡ HEAD Furthermore, if the type is correctly a list the operational
semantics will also not get stuck. ======= Furthermore, if the type is
correctly a list the operational semantics will also not get stuck. ¿¿¿¿¿¿¿
a6a2140d810f255488803f03dcc022354b941eb7

For identifiers, we will need to prove agreement, so we defer this to a later
part of the proof.

Now that we have proved the base cases, we can prove the inductive rules
by assuming that preservation and progress holds for all subexpressions and
proving they hold for the current expression.

For the binary operators, we begin by proving the integer arithmetic
operators.

Γ ⊢ S1 : Int
Γ ⊢ S2 : Int

⊙ is either -,*,/,&, |, <,>

Γ ⊢ S1 ⊙ S2 : Int

9

By the inductive hypothesis we know that the type of the two parameters
must be integers (by the hypothesis defined in the operational semantics and
in the typing rules). Then, we know that any integer minus another integer
will always yield in an integer. Furthermore, the same will hold true for
integer multiplication, or integer division. Integer comparisons and boolean
operators will also always yield a boolean, which is represented by an integral
value. Therefore if the expression correctly types to an Int then we know that
the final evaluation of the expression will have to be an integer.

Furthermore, we know that if the type could be computed then both pa-
rameters had to be integers. Because the only hypothesis for the operational
semantics are that the parameters are integers, they will clearly not get stuck.

Γ ⊢ S1 : τ
Γ ⊢ S2 : τ

τ ∈ Plussable
Γ ⊢ S1 + S2 : τ

Γ ⊢ S1 : τ
Γ ⊢ S2 : τ

τ ∈ Equatable
⊙ is either =, <>

Γ ⊢ S1 ⊙ S2 : Int

The semantics of the plus operator and equality operators have to be
separated from the rest of the arithmetic operators because they are defined
over a class of types. In our implementation we added typeclass support for
things that can be added and things that can be compared, although in L
these two type classes are equivalent since they both contain integers and
strings.

By the inductive hypothesis we know that the type of both parameters
must be equal, and must be within the typeclass. We know this because the
operational semantics have hypotheses which define the semantics only for
integers and strings. Furthermore we know string concatenation will always
yield a string. Similarly integer addition will always yield an integer. For
the equatable classes, the operational semantics will always yield a boolean
value encoded as as integer as long as the inputs are either ints or strings,
which is equivalent to the type checking rules. Therefore the evaluation of an
expression will always agree with the type computed and more importantly
the expression will always succeed if the type can be calculated since all
hypotheses for the operational semantics are met.

Γ ⊢ S1 : τ
Γ ⊢ S2 : List[τ]

Γ ⊢ S1@S2 : List[τ]

10

The final binary operator is the cons operator. By the inductive hypoth-
esis we know that the type of the first parameter will always be some type
τ and the value of the second will be a list, since that it is how it is defined
in the operational semantics. If the program type checks, that is the type
of the first parameter is the subtype of the list type of the second, then we
know that the computed type is valid for the evaluated type.

In similar fashion to previous progress arguments, we know that if the
type was computed, that the type of the first parameter is the same as
the inner type of the second parameter (which is guaranteed to be a list).
Therefore the hypotheses for the operational semantics are met and it will
not get stuck.

Next up are the unary operators.

Γ ⊢ S1 : τ

Γ ⊢ print S1 : Int

For the print function, it doesn’t matter what the type of the expression
is as long as it has a type. The operational semantics define print to always
return 0, which means that the final type of Int is always correct and because
it has no hypothesis, it trivially will never stuck.

Γ ⊢ S1 : List(τ)

Γ ⊢ isNil S1 : Int

For the isNil function, the operational semantics check if the parameter
is a nil value and return a 1 if it is, otherwise a 0. The type rules will always
return a type Int, which agrees. Similarly, the type of list of any type agrees
with the parameter if it can be checked against nil.

Because the type rules require the parameter to be a list of some type,
and the operational semantics only the require the parameter to be a list, it
is guaranteed that if the expression typed, it will not get stuck.

Γ ⊢ S1 : List(τ)

Γ ⊢ head S1 : τ

Γ ⊢ S1 : List(τ)

Γ ⊢ tail S1 : List(τ)

Head and tail are defined in the operational semantics to return the first
element, or the remainder of the list respectively. The head will always have
the same type as all elements inside the list and the tail will always have the
type of same type as the original list. Therefore the operational semantics
and the typing rules are sound.

11

If the type of the expression was successfully computed, then we know
that the type of the parameter is a list. This is the only hypothesis for the
operational semantics, so they will not get stuck.

Γ ⊢ p : Int
Γ ⊢ e1 : τ
Γ ⊢ e2 : τ

Γ ⊢ if p then e1 else e2 : τ

The operational semantics of branch define the predicate to be an integer,
then the evaluation will be either the first branch if the integer was greater
than 0 or the second if it was 0. This is consistent with the typing rules which
require the predicate to be of type Int, and return the type of a branch. The
typing rules; however, restrict the branches to have the same type in order
to perform inference, this is correct but limits the number of programs that
can type check. However it gives us the guarantee that if the program type
checks then the final type agrees with the final evaluation.

The only requirement for the operational semantics is that the predicate
evaluates to an integer. The typing rules require that, so if the program
types, the semantics will succeed and progress is preserved.

Γ ⊢ S1 : τ1 → τ2
Γ ⊢ S2 : τ1

Γ ⊢ (S1S2) : τ2

The operational semantics for application requires the first expression to
evaluated to a lambda, then it applies the second expression to the body
and returns the evaluated result. Lambdas have function types, which is
consistent with the type rules. Furthermore, the type rules require that the
type of the second parameter match the first type of the function type, then
the final type is the second type of the function type. This means that if the
type system can calculate a final type, then the application can be performed
and the final evaluated value will be in the discretization of the final type.

The requirements for the operational semantics are that the type of the
first parameter is a function and that the second parameter can be correctly
applied to it. The typing rules require the first parameter to be a function
type from τ1 to τ2 and the second parameter to be of type τ1. Therefore if
the types rule pass, the operational semantics too will pass.

12

will be of type τ1
Γ[x← τ1]S1 : τ2

Γ ⊢ λx.S1 : τ1 → τ2

Lambdas do not undergo any evaluation so the operational semantics just
return the lambda. However, the type semantics have the crucial component
of taking the type of the formal and binding it to the identifier under the
typing environment. It then uses this new type environment and calculates
the type of the body of the lambda. The final return type is therefore a
function type from the type of the formal to the type of the body which
trivially proves that it is sound with the operational semantics.

Because the operational semantics have no requirements, they will triv-
ially never get stuck.

To prove the final two transitions, we need to prove that the environment
and type environment agree by showing that for any identifier x we have that
Γ(x) = α(E(x)) where α is the abstraction function. If we can establish this
we have Γ ∼ E and have proven agreement.

Since the only rules that change the type environment and let and lambda,
we can prove that that the two environments agree inductively by building
up from the base case.

The base case is when both environments are empty, in which case they
trivially agree.

will be of type τ1
Γ[x← τ1]S1 : τ2

Γ ⊢ λx.S1 : τ1 → τ2

For the inductive case we start by proving the lambda transition. We
can assume preservation, so we know that the type of the argument is some
τ . The type rules will place this τ in the type environment bound to the
variable. Since this argument is dynamically bound to the variable in the
environment and the type in the type environment is τ and they are the same
we have shown that Γ ∼ E

Γ ⊢ S1 : τ
Γ[id← τ]S2 : τ2

Γ ⊢ let id = S1 in S2 : τ2

For the let case, we can make a very similar argument. Assuming preser-
vation, we know that the abstraction of the evaluated value is τ . The typing

13

rules will bind this τ to the identifier in the type environment. Similarly
the operational semantics will bind the evaluated value to the environment.
Because we have shown that the type in the type environment agrees with
the abstraction of the expression, we have that Γ ∼ E.

Therefore we have shown that agreement holds under all relevant transi-
tions, assuming that agreement held before. Since we have also shown that
agreement holds in the base case, we have inductively proven it will always
hold under valid transitions.

Now that we have proven agreement, we can use it to finish proving
preservation for the last two transitions.

Γ ⊢ S1 : τ
Γ[id← τ]S2 : τ2

Γ ⊢ let id = S1 in S2 : τ2

id = identifier
Γ(id) = τ

Γ ⊢ id : τ

For the identifier base case, we can assume agreement so we know know
that the type of the identifier will be sound since know Γ ∼ E.

Furthermore, by assuming agreement we know that if the typing environ-
ment has a binding for an identifier then the environment too will have a
binding, therefore the operational semantics will not get stuck.

For the let case, we can assume agreement so we know that the abstraction
of the final evaluated expression will be consistent since we know the type of
the value bound to the identifier agrees. This is exactly what we wanted to
prove.

To prove progress for let, we know that the if the typing rules apply
then the binding for the identifier also exists in the identifier, therefore the
operational semantics will not get stuck.

We have now shown that we can prove preservation and agreement for
all of the typing rules. Therefore we can conclude that the abstract value
we compute will always be a correct approximation for the concrete value of
the program. In other words the type computed will always have the final
evaluated expression in its discretization function.

Furthermore, we have also shown by assuming that all previous subex-
pressions can be evaluated correctly, we can show that all transitions will also
evaluate as long as the type system checks. In other words, given a transition,
we proved that if the type can be computed, the operational semantics will
also compute. This is a really strong proof since inductively proved all tran-
sitions and the base cases, we have shown that our type system is powerful
enough to prevent all run-time errors.

14

5 Type Inference

5.1 Design of our inference engine

Our version of L uses a Hindley-Milner inference engine to perform static
type checking at compile time without requiring typing annotations. This
gives the programmer the benefit of static type checking at compile time
without the encumbrance of having to use type annotations throughout the
source code.

The type engine is split up into two components, both of which are run
before any portion of the source is ever evaluated but after the lexxing and
parsing. The first portion performs constraint gathering by parsing abstract
syntax tree and will return the unresolved final type of the program. The
second portion takes the constraints that were gathered and performs union-
find to solve the system and extract the most generic type of all intermediate
expressions as well as the final program.

Furthermore, our type inference engine fully supports all of extensions to
the language including polymorphic lists and our stream operators.

5.1.1 Constraint Gathering

In the constraint gathering portion, our implementation performs a recursive
descent down the abstract syntax tree generated by the parser to extract type
constraints based on how different constructs are used.

The following are the constraints that are gathered for each type of Ab-
stract Syntax Tree node

• AST_UNOPWe gather a constraint that the type of the parameter must
be equivalent to the typeclass of the type of the operator.

• AST_BINOP The constraints we gather depends on whether the op-
eration is a cons operator or any other. In the case that it is a cons
operator then add a new constraint that the list type of the first pa-
rameter must be equal to the type of the second parameter.

In all other cases it first constraints the type of the first parameter with
the type of the second parameter. Then it constraints the type of the
of first argument (without loss of generality since both arguments need
to have same type) with the type of the operator.

15

• AST_BRANCH Branches have two constraints. First that the type of
both branches must be equivalent, and that the type of the predicate
must be an Int.

• AST_EXPRESSION_LIST Expression lists are the most complicated
to handle. An expression list consists of some expression containing
a lambda followed by a variable amount of expressions containing the
parameters. We recursively process the parameter list, and the last
type processed (which in the initial invocation is the arbitrary type
of the entire expression list). We start by processing the type of the
last parameter, and creating a function type that maps from that type
to the last type. It then recurses into the next argument, passing the
function type as the last type. Once the argument list has a single
element (the function), a constraint is created between the type of the
function and the last type.

• AST_LAMBDA Lambdas introduce one constraint. That the type of the
lambda must be equivalent to a function type which maps the type of
the parameter with to the resultant type of the function body.

• AST_LET Let’s introduce one constraint: that the type of identifier
must be equal to the type of the value.

• AST_LIST Lists introduce a variable amount of constraints based on
the list size. If the list has only one element, it doesn’t introduce
any constraints. For any lists greater than one element, it creates
constraints for every overlapping adjacent pair of elements that their
types must be equal.

5.1.2 Constraint Solving

Once all constraints are gathered, our implementation begins the solving
process. This is beautifully simple. It simply iterates over all the constraints
and unifies them, if the unification fails it reports a relevant error, otherwise
it continues on to the next one. If either constraint type is a variable type,
it will also check that the variable was defined, to prevent unbound identifier
runtime errors.

Once all constraints are solved, it simply returns find of the program’s
final type. We had to recursively resolve the final type if it was composed of
either lists, functions, or weak types and call find on their respective subtypes.

16

6 Type Inference Examples

6.1 Required Examples

6.2 Example 1

l e t f = lambda x , y . x+y i n
l e t k = (f 2) i n
(k 3)

final solved type: ConstantType(Int)
5

6.3 Example 2

l e t x = lambda a . a i n
l e t a = 1 i n
(x 3)

final solved type: ConstantType(Int)
3

6.4 Example 3

l e t x = lambda y , z . 1+y+z i n
l e t k = (x 4) i n
l e t u = (k 5) i n u

will yield

final solved type: ConstantType(Int)
10

6.5 Example 4

l e t f = lambda x . i f x = 0 then 1 e l s e x ∗ (g x)
i n
l e t g = lambda x . (f (x 1))
i n
(f 6)

17

final solved type: ConstantType(Int)
720

6.6 Example 5

fun r e a d l i s t w i th n =
i f n = 0 then N i l e l s e
l e t v a l = r e a d I n t i n
l e t res t = (r e a d l i s t (n 1)) i n
v a l @ res t

i n
l e t = pr in t ” Ente r number o f i n t e g e r s i n l i s t ” i n
l e t num = r e a d I n t i n
l e t = pr in t ” P l e a s e e n t e r the l i s t v a l u e s : ” i n
l e t l = (r e a d l i s t num) i n
l e t = pr in t ” L i s t e n t e r e d ” i n
l e t = pr in t l i n
l e t = pr in t ”Adding 2 to each e l ement : ” i n

fun add wi th l , n =
i f i s N i l #l then [! l+n] e l s e
l e t hd = ! l i n
l e t t l = #l i n
(hd+n) @ (add t l n)

i n

(add l 2)

final solved type: List[ConstantType(Int)]
Enter number of integers in list
1
Please enter the list values:
1
List entered
[1]
Adding 2 to each element:
[3]

6.7 Example 6

18

fun my p r i n t w i th x =
l e t = pr in t ”@@” i n pr in t x

i n
l e t = (my p r i n t ”duck”) i n
l e t = (my p r i n t 7) i n
l e t = (my p r i n t [1 , 2]) i n
0

final solved type: ConstantType(Int)
@@
duck
@@
7
@@
[1, 2]
0

6.8 Example 7

l e t x = 1 @ 2 @ N i l i n
l e t y = i f i s N i l x then 3 e l s e 4 i n
y

final solved type: ConstantType(Int)
4

6.9 Examples of Type System preventing errors

6.9.1 Unbound identifier errors

l e t x = 1 i n x + y

[TYPE ERROR] Found unbound variable: y
From expression: (x + y)}

6.9.2 Calling list operators on non-list types

! 4

[TYPE ERROR] Constraint unsatisfiable: ConstantType(Int) = List[
ArbitraryType(1)]

From expression: (!4)}

19

6.9.3 Performing binary operators on two parameters of different
types

4 + ” t e s t ”

[TYPE ERROR] Constraint unsatisfiable: ConstantType(Int) =
ConstantType(String)

From expression: (4 + "test")}

6.9.4 Function application with wrong parameter type for non-
polymorphic functions

l e t f = \x . x+1 i n (f ” s t r i n g ”)

[TYPE ERROR] Constraint unsatisfiable: VariableType(f) = Lambda(
WeakType(ConstantType(String))[final], ArbitraryType(5))

From expression: (f "string")

7 Source code and running

The source code of L is beautifully organized and is all present within the
/src directory. The source code for the lexer is present in lexer.l. The
source code for the parser is in parser.y. The source code for the interpreter
is in Evaulator.cpp. The source code for the type inference engine is in
TypeInference.cpp.

Furthermore, we built L using test-driven development to ensure only
the highest quality of code. To run our test-suite execute ./bats test in
the root of the source directory. All test files are located within the /test
directory. Please note that Dillig’s Test 5 requires some input, we recommend
just giving 1 {ENTER} 1 {ENTER} as input.

We hope you enjoy learning about L and using it as much as we did
making it.

20

